Что такое внутреннее сопротивление и как оно мешает нам измениться к лучшему — Лайфхакер

Расчет внутреннего сопротивления источника тока (напряжения)

Источник – это устройство, которое преобразует механическую, химическую, термическую и некоторые другие формы энергии в электрическую. Другими словами, источник является активным сетевым элементом, предназначенным для генерации электроэнергии. Различные типы источников, доступных в электросети, представляют собой источники напряжения и источники тока. Эти две концепции в электронике различаются друг от друга.

Обозначение на схеме источников тока и напряжения

Источник постоянного напряжения

Источник напряжения – устройство с двумя полюсами, напряжение его в любой момент времени является постоянным, и проходящий через него ток не оказывает влияния. Такой источник будет идеальным, имеющим нулевое внутреннее сопротивление. В практических условиях он не может быть получен.

На отрицательном полюсе источника напряжения скапливается избыток электронов, у положительного полюса – их дефицит. Состояния полюсов поддерживаются процессами внутри источника.

Батареи

Батареи хранят химическую энергию внутри и способны преобразовывать ее в электрическую. Батареи не могут быть перезаряжены, что является их недостатком.

Различные виды батарей

Аккумуляторы

Аккумуляторы являются перезаряжаемыми батареями. При зарядке электрическая энергия сохраняется внутри в виде химической. Во время разгрузки химический процесс протекает в противоположном направлении, а электрическая энергия высвобождается.

Примеры:

  1. Свинцово-кислотный аккумуляторный элемент. Изготавливается из свинцовых электродов и электролитической жидкости в виде разведенной дистиллированной водой серной кислоты. Напряжение на ячейку – около 2 В. В автомобильных аккумуляторах шесть ячеек обычно соединены в последовательную цепь, на клеммах выхода результирующее напряжение – 12 В;

  1. Никель-кадмиевые аккумуляторы, напряжение ячейки – 1,2 В.

Важно! При небольших токах батареи и аккумуляторы можно рассматривать как хорошее приближение к идеальным источникам напряжения.

Источник переменного напряжения

Электроэнергия производится на электрических станциях с помощью генераторов и после регулирования напряжения передается к потребителю. Переменное напряжение домашней сети 220 В в блоках питания различных электронных устройств легко преобразуется в более низкий показатель при применении трансформаторов.

Источник тока

По аналогии, как идеальный источник напряжения создает постоянное напряжение на выходе, задача источника тока – выдать постоянное значение тока, автоматом контролируя требуемое напряжение. Примерами являются трансформаторы тока (вторичная обмотка), фотоэлементы, коллекторные токи транзисторов.

Расчет внутреннего сопротивления источника напряжения

Реальные источники напряжения обладают собственным электрическим сопротивлением, которое называется «внутреннее сопротивление». Присоединенная на выводы источника нагрузка обозначается под названием «внешнее сопротивление» – R.

Батарея аккумуляторов генерирует ЭДС:

  • Е – энергия (Дж);
  • Q – заряд (Кл).

Суммарная ЭДС аккумуляторного элемента является напряжением его разомкнутой цепи при отсутствии нагрузки. Его можно проконтролировать с хорошей точностью цифровым мультиметром. Разность потенциалов, измеренная на выходных контактах батареи, когда она включена на нагрузочный резистор, составит меньшую величину, чем ее напряжение при незамкнутой цепи, по причине протекания тока через нагрузочное внешнее и через внутреннее сопротивление источника, это приводит к рассеиванию энергии в нем как теплового излучения.

Внутреннее сопротивление аккумулятора с химическим принципом действия находится между долей ома и несколькими омами и в основном связано с сопротивлением электролитических материалов, используемых при изготовлении батареи.

Если резистор сопротивлением R подсоединить к батарее, ток в цепи I = ε/(R + r).

Читайте также:  Утилитарный четырехтактный снегоход BRP Lynx 59 600 Ace BRP Центр У Павла в Костроме

Внутреннее сопротивление – не постоянная величина. На него влияет род батареи (щелочная, свинцово-кислотная и т. д.), оно изменяется в зависимости от нагрузочного значения, температуры и срока использования аккумулятора. К примеру, у разовых батареек внутреннее сопротивление возрастает во время использования, а напряжение в связи с этим падает до прихода в состояние, непригодное для дальнейшей эксплуатации.

Схема и ВАХ идеального ИН

Если ЭДС источника – заранее данная величина, внутреннее сопротивление источника определяется, измеряя ток, протекающий через нагрузочное сопротивление.

  1. Так как внутреннее и внешнее сопротивление в приближённой схеме включены последовательно, можно использовать законы Ома и Кирхгофа для применения формулы:
  1. Из этого выражения r = ε/I — R.

Пример. Аккумулятор с известной ЭДС ε = 1.5 В и соединен последовательно с лампочкой. Падение напряжения на лампочке составляет 1,2 В. Следовательно, внутреннее сопротивление элемента создает падение напряжения: 1,5 — 1,2 = 0,3 В. Сопротивление проводов в цепи считается пренебрежимо малым, сопротивление лампы не известно. Измеренный ток, проходящий через цепь: I = 0,3 А. Нужно определить внутреннее сопротивление аккумулятора.

  1. По закону Ома сопротивление лампочки R = U/I = 1,2/0,3 = 4 Ом;
  2. Теперь по формуле для расчета внутреннего сопротивления r = ε/I — R = 1,5/0,3 — 4 = 1 Ом.

В случае короткого замыкания внешнее сопротивление падает почти до нуля. Ток может ограничивать свое значение только маленьким сопротивлением источника. Сила тока, возникающая в такой ситуации, настолько велика, что источник напряжения может быть поврежден тепловым воздействием тока, существует опасность возгорания. Риск пожара предотвращается установкой предохранителей, например, в цепях автомобильных аккумуляторов.

Внутреннее сопротивление источника напряжения – важный фактор, когда решается вопрос, как передать наиболее эффективную мощность подсоединенному электроприбору.

Важно! Максимальная передача мощности происходит, когда внутреннее сопротивление источника равно сопротивлению нагрузки.

Однако при этом условии, помня формулу Р = I² x R, идентичное количество энергии отдается нагрузке и рассеивается в самом источнике, а его КПД составляет всего 50%.

Требования нагрузки должны быть тщательно рассмотрены для принятия решения о наилучшем использовании источника. Например, свинцово-кислотная автомобильная батарея должна обеспечивать высокие токи при сравнительно низком напряжении 12 В. Ее низкое внутреннее сопротивление позволяет ей это делать.

В некоторых случаях источники питания высокого напряжения должны иметь чрезвычайно большое внутреннее сопротивление, чтобы ограничить ток к. з.

Особенности внутреннего сопротивления источника тока

У идеального источника тока бесконечное сопротивление, а для подлинных источников можно представить приближенный вариант. Эквивалентная электросхема – это сопротивление, подключенное к источнику параллельно, и внешнее сопротивление.

Схема идеального ИТ

Токовый выход от источника тока распределяется так: частично ток течет через наиболее высокое внутреннее сопротивление и через низкое сопротивление нагрузки.

Выходной ток будет находиться из суммы токов на внутреннем сопротивлении и нагрузочного Iо = Iн + Iвн.

Получается:

Iн = Iо — Iвн = Iо — Uн/r.

Эта зависимость показывает, что когда внутреннее сопротивление источника тока растет, тем больше снижается ток на нем, а резистор нагрузки получает большую часть тока. Интересно, что напряжение влиять не будет на токовую величину.

Выходное напряжение реального источника:

Uвых = I x (R x r)/(R +r) = I x R/(1 + R/r).

Сила тока:

Выходная мощность:

Рвых = I² x R/(1 + R/r)².

Важно! Анализируя схемы, исходят из следующих условий: при значительном превышении внутреннего сопротивления источника над внешним он является источником тока. Когда наоборот, внутреннее сопротивление значительно меньше внешнего, это источник напряжения.

Источники тока применяются при подаче электроэнергии на измерительные мосты, операционные усилители, это могут быть различные датчики.

Читайте также:  Как связаться с РСА номер горячей линии, почтовый адрес

Видео

Чем отличается ЭДС от напряжения: простое объяснение на примере

Что такое электродвижущая сила

Под ЭДС понимается физическая величина, характеризующая работу каких-либо сторонних сил, находящихся в источниках питания постоянного или переменного тока. При этом, если имеется замкнутый контур, то можно сказать, что ЭДС равна работе сил по перемещению положительного заряда к отрицательному по замкнутой цепи. Или простыми словами, ЭДС источника тока представляет работу, необходимую для перемещения единичного заряда между полюсами.

При этом если источник тока имеющего бесконечную мощность, а внутреннее сопротивление будет отсутствовать (позиция А на рисунке), то ЭДС можно рассчитать по закону Ома для участка цепи, т.к. напряжение и электродвижущая сила в этом случае равны.

где U – напряжение, а в рассмотренном примере — ЭДС.

Однако, реальный источник питания имеет конечное внутреннее сопротивление. Поэтому такой расчет нельзя применять на практике. В этом случае для определения ЭДС пользуются формулой для полной цепи.

где E (также обозначается как «ԑ») — ЭДС; R – сопротивление нагрузки, r – внутреннее сопротивление источника электропитания, I – ток в цепи.

Однако, эта формула не учитывает сопротивление проводников цепи. При этом необходимо понимать, что внутри источника постоянного тока и во внешней цепи, ток течет в разных направлениях. Разница заключается в том, что внутри элемента он течет от минуса к плюсу, то во внешней цепи от плюса к минусу.

Это наглядно представлено на ниже приведенном рисунке:

При этом электродвижущая сила измеряется вольтметром, в случае, когда нет нагрузки, т.е. источник питания работает в режиме холостого хода.

Чтобы найти ЭДС через напряжение и сопротивление нагрузки нужно найти внутреннее сопротивление источника питания, для этого измеряют напряжение дважды при разных токах нагрузки, после чего находят внутреннее сопротивление. Ниже приведен порядок вычисления по формулам, далее R1, R2 — сопротивление нагрузки для первого и второго измерения соответственно, остальные величины аналогично, U1, U2 – напряжения источника на его зажимах под нагрузкой.

Итак, нам известен ток, тогда он равен:

Если подставить в первые уравнения, то:

Теперь разделим левые и правые части друг на друга:

После вычисления относительно сопротивления источника тока получим:

Внутреннее сопротивление r:

где U1, U2 — напряжение на зажимах источника при разном токе нагрузки, I — ток в цепи.

Тогда ЭДС равно:

E=I*(R+r) или E=U1+I1*r

Что такое напряжение

Электрическое напряжение (обозначается как U) – это физическая величина, которая отражает количественную характеристику работы электрического поля по переносу заряда из точки А в точку В. Соответственно напряжение может быть между двумя точками цепи, но в отличии от ЭДС оно может быть между двумя выводами какого-то из элементов цепи. Напомним, что ЭДС характеризует работу, выполненную сторонними силами, то есть работу самого источника тока или ЭДС по переносу заряда через всю цепь, а не на конкретном элементе.

Это определение можно выразить простым языком. Напряжение источников постоянного тока – это сила, которая перемещает свободные электроны от одного атома к другому в определенном направлении.

Для переменного тока используют следующие понятия:

  • мгновенное напряжение — это разность потенциалов между точками в данный промежуток времени;
  • амплитудное значение – представляет максимальную величину по модулю мгновенного значения напряжения за промежуток времени;
  • среднее значение – постоянная составляющая напряжения;
  • среднеквадратичное и средневыпрямленное.
Читайте также:  Устройство и ремонт масляного насоса бензопилы 101 Бензопила

Напряжение участка цепи зависит от материала проводника, сопротивления нагрузки и температуры. Так же как и электродвижущая сила измеряется в Вольтах.

Часто для понимания физического смысла напряжения, его сравнивают с водонапорной башней. Столб воды отождествляют с напряжением, а поток с током.

При этом столб воды в башне постепенно уменьшается, что характеризует понижение напряжения и уменьшения силы тока.

Так в чем же отличие

Для лучшего понимания, в чем состоит разница электродвижущей силы от напряжения, рассмотрим пример. Имеется источник электрической энергии бесконечной мощности, в котором отсутствует внутреннее сопротивление. В электрической цепи смонтирована нагрузка. В этом случае будет справедливо утверждение, что ЭДС и напряжение тождественно равны, т.е между этими понятиями отсутствует разница.

Однако, это идеальные условия, которые в реальной жизни не встречаются. Эти условия используют исключительно при расчетах. В реальной жизни учитывается внутреннее сопротивление источника питания. В этом случае ЭДС и напряжение имеют отличия.

На рисунке представлено, какая разница будет в значениях электродвижущей силы и напряжении в реальных условиях. Вышеприведенная формула закона Ома для полной цепи описывает все процессы. При разомкнутой цепи на клеммах батарейки будет значение 1,5 Вольта. Это значение ЭДС. Подключив нагрузку, в данном случае это лампочка, на ней будет напряжение 1 вольт.

Разница от идеального источника заключается в наличии внутреннего сопротивления источника питания. На этом сопротивлении и происходит падение напряжения. Эти процессы описывает закон Ома для полной цепи.

Если измерительный прибор на зажимах источника электроэнергии показывает значение 1,5 Вольта, это будет электродвижущая сила, но повторим, при условии отсутствия нагрузки.

При подключении нагрузки на клеммах будет заведомо меньшее значение. Это и есть напряжение.

Вывод

Из вышесказанного можно сделать вывод, что основная разница между ЭДС и напряжением состоит:

  1. Электродвижущая сила зависит от источника питания, а напряжение зависит от подключенной нагрузки и тока, протекающего по цепи.
  2. Электродвижущая сила это физическая величина, характеризующая работу сторонних сил неэлектрического происхождения, происходящих в цепях постоянного и переменного тока.
  3. Напряжение и ЭДС имеет единую единицу измерения – Вольт.
  4. U -величина физическая, равная работе эффективного электрического поля, производимой при переносе единичного пробного заряда из точки А в точку В.

Таким образом, кратко, если представить U в виде столба воды, то ЭДС можно представить что это насос, поддерживающий уровень воды на постоянном уровне. Надеемся, после прочтения статьи Вам стало понятно основное отличие!

Связь ЭДС и напряжения

В задачах на электрический ток в качестве дано или найти присутствуют напряжение и ЭДС (электродвижущая сила). Есть достаточно простая связь между этими параметрами. Введём любую цепь (рис. 1).

Рис. 1. Связь между ЭДС и напряжением

Пусть дан источник с ЭДС , напряжение во внешней цепи . Внутреннее сопротивление источника — , а сопротивление внешней цепи — . В данной системе течёт электрический ток . Тогда:

(2)

Логично предположить, что количество электронов, сгенерированных источником, равно количеству электронов, ушедших в цепь, тогда приравниваем (1) и (2):

(3)

Соотношение (3) — связь между ЭДС и напряжением в полной цепи постоянного тока.

В условиях идеальной цепи (внутреннее сопротивление источника равно нулю ), ЭДС численно равно напряжению.

Вывод: приведенные соотношения помогают в ряде задач, в которых даны параметры источника тока/напряжения, а необходимо найти силу тока или напряжения на каком-либо элементе цепи (резистор, катушка, лампа и т.д.), и наоборот.

Ссылка на основную публикацию
Что такое HTHS моторных масел
Нужно ли менять масла для ГПУ при падении щелочного числа более чем на 50% В сегменте стационарных газовых двигателей существует...
Что можно резать болгаркой, а чего нельзя
Можно ли болгаркой пилить дерево Обзор дисков для инструмента Если вы пытаетесь понять можно ли болгаркой пилить дерево, то ответ...
Что можно сделать из старого принтера — 4 идеи
Режущий и печатающий плоттер из принтера или dvd-привода своими руками Графопостроители представляют собой устройства, которые в автоматическом режиме с заданной...
Что такое Launch Control и как он работает
Лаунч контроль от А до Я что такое, как работает, для чего нужен Современные машины подразумевают наличие установки под названием...

Что такое внутреннее сопротивление и как оно мешает нам измениться к лучшему — Лайфхакер

Расчет внутреннего сопротивления источника тока (напряжения)

Источник – это устройство, которое преобразует механическую, химическую, термическую и некоторые другие формы энергии в электрическую. Другими словами, источник является активным сетевым элементом, предназначенным для генерации электроэнергии. Различные типы источников, доступных в электросети, представляют собой источники напряжения и источники тока. Эти две концепции в электронике различаются друг от друга.

Обозначение на схеме источников тока и напряжения

Источник постоянного напряжения

Источник напряжения – устройство с двумя полюсами, напряжение его в любой момент времени является постоянным, и проходящий через него ток не оказывает влияния. Такой источник будет идеальным, имеющим нулевое внутреннее сопротивление. В практических условиях он не может быть получен.

На отрицательном полюсе источника напряжения скапливается избыток электронов, у положительного полюса – их дефицит. Состояния полюсов поддерживаются процессами внутри источника.

Батареи

Батареи хранят химическую энергию внутри и способны преобразовывать ее в электрическую. Батареи не могут быть перезаряжены, что является их недостатком.

Различные виды батарей

Аккумуляторы

Аккумуляторы являются перезаряжаемыми батареями. При зарядке электрическая энергия сохраняется внутри в виде химической. Во время разгрузки химический процесс протекает в противоположном направлении, а электрическая энергия высвобождается.

Примеры:

  1. Свинцово-кислотный аккумуляторный элемент. Изготавливается из свинцовых электродов и электролитической жидкости в виде разведенной дистиллированной водой серной кислоты. Напряжение на ячейку – около 2 В. В автомобильных аккумуляторах шесть ячеек обычно соединены в последовательную цепь, на клеммах выхода результирующее напряжение – 12 В;

  1. Никель-кадмиевые аккумуляторы, напряжение ячейки – 1,2 В.

Важно! При небольших токах батареи и аккумуляторы можно рассматривать как хорошее приближение к идеальным источникам напряжения.

Источник переменного напряжения

Электроэнергия производится на электрических станциях с помощью генераторов и после регулирования напряжения передается к потребителю. Переменное напряжение домашней сети 220 В в блоках питания различных электронных устройств легко преобразуется в более низкий показатель при применении трансформаторов.

Источник тока

По аналогии, как идеальный источник напряжения создает постоянное напряжение на выходе, задача источника тока – выдать постоянное значение тока, автоматом контролируя требуемое напряжение. Примерами являются трансформаторы тока (вторичная обмотка), фотоэлементы, коллекторные токи транзисторов.

Расчет внутреннего сопротивления источника напряжения

Реальные источники напряжения обладают собственным электрическим сопротивлением, которое называется «внутреннее сопротивление». Присоединенная на выводы источника нагрузка обозначается под названием «внешнее сопротивление» – R.

Батарея аккумуляторов генерирует ЭДС:

  • Е – энергия (Дж);
  • Q – заряд (Кл).

Суммарная ЭДС аккумуляторного элемента является напряжением его разомкнутой цепи при отсутствии нагрузки. Его можно проконтролировать с хорошей точностью цифровым мультиметром. Разность потенциалов, измеренная на выходных контактах батареи, когда она включена на нагрузочный резистор, составит меньшую величину, чем ее напряжение при незамкнутой цепи, по причине протекания тока через нагрузочное внешнее и через внутреннее сопротивление источника, это приводит к рассеиванию энергии в нем как теплового излучения.

Внутреннее сопротивление аккумулятора с химическим принципом действия находится между долей ома и несколькими омами и в основном связано с сопротивлением электролитических материалов, используемых при изготовлении батареи.

Если резистор сопротивлением R подсоединить к батарее, ток в цепи I = ε/(R + r).

Читайте также:  Масляный фильтр Тойота Королла инструкция по замене своими руками

Внутреннее сопротивление – не постоянная величина. На него влияет род батареи (щелочная, свинцово-кислотная и т. д.), оно изменяется в зависимости от нагрузочного значения, температуры и срока использования аккумулятора. К примеру, у разовых батареек внутреннее сопротивление возрастает во время использования, а напряжение в связи с этим падает до прихода в состояние, непригодное для дальнейшей эксплуатации.

Схема и ВАХ идеального ИН

Если ЭДС источника – заранее данная величина, внутреннее сопротивление источника определяется, измеряя ток, протекающий через нагрузочное сопротивление.

  1. Так как внутреннее и внешнее сопротивление в приближённой схеме включены последовательно, можно использовать законы Ома и Кирхгофа для применения формулы:
  1. Из этого выражения r = ε/I — R.

Пример. Аккумулятор с известной ЭДС ε = 1.5 В и соединен последовательно с лампочкой. Падение напряжения на лампочке составляет 1,2 В. Следовательно, внутреннее сопротивление элемента создает падение напряжения: 1,5 — 1,2 = 0,3 В. Сопротивление проводов в цепи считается пренебрежимо малым, сопротивление лампы не известно. Измеренный ток, проходящий через цепь: I = 0,3 А. Нужно определить внутреннее сопротивление аккумулятора.

  1. По закону Ома сопротивление лампочки R = U/I = 1,2/0,3 = 4 Ом;
  2. Теперь по формуле для расчета внутреннего сопротивления r = ε/I — R = 1,5/0,3 — 4 = 1 Ом.

В случае короткого замыкания внешнее сопротивление падает почти до нуля. Ток может ограничивать свое значение только маленьким сопротивлением источника. Сила тока, возникающая в такой ситуации, настолько велика, что источник напряжения может быть поврежден тепловым воздействием тока, существует опасность возгорания. Риск пожара предотвращается установкой предохранителей, например, в цепях автомобильных аккумуляторов.

Внутреннее сопротивление источника напряжения – важный фактор, когда решается вопрос, как передать наиболее эффективную мощность подсоединенному электроприбору.

Важно! Максимальная передача мощности происходит, когда внутреннее сопротивление источника равно сопротивлению нагрузки.

Однако при этом условии, помня формулу Р = I² x R, идентичное количество энергии отдается нагрузке и рассеивается в самом источнике, а его КПД составляет всего 50%.

Требования нагрузки должны быть тщательно рассмотрены для принятия решения о наилучшем использовании источника. Например, свинцово-кислотная автомобильная батарея должна обеспечивать высокие токи при сравнительно низком напряжении 12 В. Ее низкое внутреннее сопротивление позволяет ей это делать.

В некоторых случаях источники питания высокого напряжения должны иметь чрезвычайно большое внутреннее сопротивление, чтобы ограничить ток к. з.

Особенности внутреннего сопротивления источника тока

У идеального источника тока бесконечное сопротивление, а для подлинных источников можно представить приближенный вариант. Эквивалентная электросхема – это сопротивление, подключенное к источнику параллельно, и внешнее сопротивление.

Схема идеального ИТ

Токовый выход от источника тока распределяется так: частично ток течет через наиболее высокое внутреннее сопротивление и через низкое сопротивление нагрузки.

Выходной ток будет находиться из суммы токов на внутреннем сопротивлении и нагрузочного Iо = Iн + Iвн.

Получается:

Iн = Iо — Iвн = Iо — Uн/r.

Эта зависимость показывает, что когда внутреннее сопротивление источника тока растет, тем больше снижается ток на нем, а резистор нагрузки получает большую часть тока. Интересно, что напряжение влиять не будет на токовую величину.

Выходное напряжение реального источника:

Uвых = I x (R x r)/(R +r) = I x R/(1 + R/r).

Сила тока:

Выходная мощность:

Рвых = I² x R/(1 + R/r)².

Важно! Анализируя схемы, исходят из следующих условий: при значительном превышении внутреннего сопротивления источника над внешним он является источником тока. Когда наоборот, внутреннее сопротивление значительно меньше внешнего, это источник напряжения.

Источники тока применяются при подаче электроэнергии на измерительные мосты, операционные усилители, это могут быть различные датчики.

Читайте также:  Как связаться с РСА номер горячей линии, почтовый адрес

Видео

Чем отличается ЭДС от напряжения: простое объяснение на примере

Что такое электродвижущая сила

Под ЭДС понимается физическая величина, характеризующая работу каких-либо сторонних сил, находящихся в источниках питания постоянного или переменного тока. При этом, если имеется замкнутый контур, то можно сказать, что ЭДС равна работе сил по перемещению положительного заряда к отрицательному по замкнутой цепи. Или простыми словами, ЭДС источника тока представляет работу, необходимую для перемещения единичного заряда между полюсами.

При этом если источник тока имеющего бесконечную мощность, а внутреннее сопротивление будет отсутствовать (позиция А на рисунке), то ЭДС можно рассчитать по закону Ома для участка цепи, т.к. напряжение и электродвижущая сила в этом случае равны.

где U – напряжение, а в рассмотренном примере — ЭДС.

Однако, реальный источник питания имеет конечное внутреннее сопротивление. Поэтому такой расчет нельзя применять на практике. В этом случае для определения ЭДС пользуются формулой для полной цепи.

где E (также обозначается как «ԑ») — ЭДС; R – сопротивление нагрузки, r – внутреннее сопротивление источника электропитания, I – ток в цепи.

Однако, эта формула не учитывает сопротивление проводников цепи. При этом необходимо понимать, что внутри источника постоянного тока и во внешней цепи, ток течет в разных направлениях. Разница заключается в том, что внутри элемента он течет от минуса к плюсу, то во внешней цепи от плюса к минусу.

Это наглядно представлено на ниже приведенном рисунке:

При этом электродвижущая сила измеряется вольтметром, в случае, когда нет нагрузки, т.е. источник питания работает в режиме холостого хода.

Чтобы найти ЭДС через напряжение и сопротивление нагрузки нужно найти внутреннее сопротивление источника питания, для этого измеряют напряжение дважды при разных токах нагрузки, после чего находят внутреннее сопротивление. Ниже приведен порядок вычисления по формулам, далее R1, R2 — сопротивление нагрузки для первого и второго измерения соответственно, остальные величины аналогично, U1, U2 – напряжения источника на его зажимах под нагрузкой.

Итак, нам известен ток, тогда он равен:

Если подставить в первые уравнения, то:

Теперь разделим левые и правые части друг на друга:

После вычисления относительно сопротивления источника тока получим:

Внутреннее сопротивление r:

где U1, U2 — напряжение на зажимах источника при разном токе нагрузки, I — ток в цепи.

Тогда ЭДС равно:

E=I*(R+r) или E=U1+I1*r

Что такое напряжение

Электрическое напряжение (обозначается как U) – это физическая величина, которая отражает количественную характеристику работы электрического поля по переносу заряда из точки А в точку В. Соответственно напряжение может быть между двумя точками цепи, но в отличии от ЭДС оно может быть между двумя выводами какого-то из элементов цепи. Напомним, что ЭДС характеризует работу, выполненную сторонними силами, то есть работу самого источника тока или ЭДС по переносу заряда через всю цепь, а не на конкретном элементе.

Это определение можно выразить простым языком. Напряжение источников постоянного тока – это сила, которая перемещает свободные электроны от одного атома к другому в определенном направлении.

Для переменного тока используют следующие понятия:

  • мгновенное напряжение — это разность потенциалов между точками в данный промежуток времени;
  • амплитудное значение – представляет максимальную величину по модулю мгновенного значения напряжения за промежуток времени;
  • среднее значение – постоянная составляющая напряжения;
  • среднеквадратичное и средневыпрямленное.
Читайте также:  Отзыв о Dongfeng H30 Cross 1

Напряжение участка цепи зависит от материала проводника, сопротивления нагрузки и температуры. Так же как и электродвижущая сила измеряется в Вольтах.

Часто для понимания физического смысла напряжения, его сравнивают с водонапорной башней. Столб воды отождествляют с напряжением, а поток с током.

При этом столб воды в башне постепенно уменьшается, что характеризует понижение напряжения и уменьшения силы тока.

Так в чем же отличие

Для лучшего понимания, в чем состоит разница электродвижущей силы от напряжения, рассмотрим пример. Имеется источник электрической энергии бесконечной мощности, в котором отсутствует внутреннее сопротивление. В электрической цепи смонтирована нагрузка. В этом случае будет справедливо утверждение, что ЭДС и напряжение тождественно равны, т.е между этими понятиями отсутствует разница.

Однако, это идеальные условия, которые в реальной жизни не встречаются. Эти условия используют исключительно при расчетах. В реальной жизни учитывается внутреннее сопротивление источника питания. В этом случае ЭДС и напряжение имеют отличия.

На рисунке представлено, какая разница будет в значениях электродвижущей силы и напряжении в реальных условиях. Вышеприведенная формула закона Ома для полной цепи описывает все процессы. При разомкнутой цепи на клеммах батарейки будет значение 1,5 Вольта. Это значение ЭДС. Подключив нагрузку, в данном случае это лампочка, на ней будет напряжение 1 вольт.

Разница от идеального источника заключается в наличии внутреннего сопротивления источника питания. На этом сопротивлении и происходит падение напряжения. Эти процессы описывает закон Ома для полной цепи.

Если измерительный прибор на зажимах источника электроэнергии показывает значение 1,5 Вольта, это будет электродвижущая сила, но повторим, при условии отсутствия нагрузки.

При подключении нагрузки на клеммах будет заведомо меньшее значение. Это и есть напряжение.

Вывод

Из вышесказанного можно сделать вывод, что основная разница между ЭДС и напряжением состоит:

  1. Электродвижущая сила зависит от источника питания, а напряжение зависит от подключенной нагрузки и тока, протекающего по цепи.
  2. Электродвижущая сила это физическая величина, характеризующая работу сторонних сил неэлектрического происхождения, происходящих в цепях постоянного и переменного тока.
  3. Напряжение и ЭДС имеет единую единицу измерения – Вольт.
  4. U -величина физическая, равная работе эффективного электрического поля, производимой при переносе единичного пробного заряда из точки А в точку В.

Таким образом, кратко, если представить U в виде столба воды, то ЭДС можно представить что это насос, поддерживающий уровень воды на постоянном уровне. Надеемся, после прочтения статьи Вам стало понятно основное отличие!

Связь ЭДС и напряжения

В задачах на электрический ток в качестве дано или найти присутствуют напряжение и ЭДС (электродвижущая сила). Есть достаточно простая связь между этими параметрами. Введём любую цепь (рис. 1).

Рис. 1. Связь между ЭДС и напряжением

Пусть дан источник с ЭДС , напряжение во внешней цепи . Внутреннее сопротивление источника — , а сопротивление внешней цепи — . В данной системе течёт электрический ток . Тогда:

(2)

Логично предположить, что количество электронов, сгенерированных источником, равно количеству электронов, ушедших в цепь, тогда приравниваем (1) и (2):

(3)

Соотношение (3) — связь между ЭДС и напряжением в полной цепи постоянного тока.

В условиях идеальной цепи (внутреннее сопротивление источника равно нулю ), ЭДС численно равно напряжению.

Вывод: приведенные соотношения помогают в ряде задач, в которых даны параметры источника тока/напряжения, а необходимо найти силу тока или напряжения на каком-либо элементе цепи (резистор, катушка, лампа и т.д.), и наоборот.

Ссылка на основную публикацию
Что такое HTHS моторных масел
Нужно ли менять масла для ГПУ при падении щелочного числа более чем на 50% В сегменте стационарных газовых двигателей существует...
Что можно резать болгаркой, а чего нельзя
Можно ли болгаркой пилить дерево Обзор дисков для инструмента Если вы пытаетесь понять можно ли болгаркой пилить дерево, то ответ...
Что можно сделать из старого принтера — 4 идеи
Режущий и печатающий плоттер из принтера или dvd-привода своими руками Графопостроители представляют собой устройства, которые в автоматическом режиме с заданной...
Что такое Launch Control и как он работает
Лаунч контроль от А до Я что такое, как работает, для чего нужен Современные машины подразумевают наличие установки под названием...
Adblock detector